APPENDIX A - GIS Technical Analysis

The purpose of this document is to describe the technical approach for identifying sites for additional monitoring stations in the Merced Subbasin GSP to address multiple data gaps in a strategic and cost-effective manner.

Two separate analyses were performed to provide a process to fill the data gaps, as identified by the GSP and stakeholder and public input.

The first analysis (Section 1 - Weighted Monitoring Network Analysis) focuses on leveraging existing infrastructure by identifying the quality of existing monitoring sites that could be incorporated into monitoring under SGMA, focusing on high quality sites that have well construction information, a higher frequency of monitoring, and longer period of records. Once the existing monitoring sites were screened for quality of site, an analysis was conducted to identify and quantify other factors that related to siting, such as distance to rivers, depth to groundwater, rate of subsidence, relationship to the Corcoran Clay and other factors to identify areas with higher needs for monitoring.

The second analysis (Section 2 - Site Identification Kriging Error Analysis) focuses on the spatial nature of monitoring networks and uses a measure of uncertainty, kriging error, to identify which areas are the most beneficial to establish new monitoring. Kriging is a technique often used to contour groundwater data. Errors in kriging quantify when there is insufficient data or inconsistent data in an area. These errors can be used to identify areas in need of new monitoring.

Results from both analyses were combined (Section 3 - Combining Recommended Monitoring Analyses) using the Esri ArcGIS Densify Sampling Network tool to recommend new monitoring sites. Based on guidance from the Department of Water Resources (Best Management Practices for the Sustainable Monitoring of Groundwater: Monitoring Networks and Identification of Data Gaps), a groundwater elevation monitoring density of 4 wells / 100 sq. mi. was selected for the purposes of the analysis to identify additional monitoring locations.

1. WEIGHTED MONITORING NETWORK ANALYSIS

This section focuses on leveraging existing infrastructure by identifying the quality of existing monitoring sites that could be incorporated into monitoring under SGMA, focusing on high quality sites that have well construction information, a higher frequency of monitoring, and longer period of records. Once the existing monitoring sites were screened for quality of site, an analysis was conducted to identify and quantify other factors that related to siting, such as distance to rivers, depth to groundwater, rate of subsidence, relationship to the Corcoran Clay and other factors to identify areas with higher needs for monitoring.

1.1 Well Tiering

Well tiering was used to divide existing monitoring wells into groups to better understand the coverage of high quality monitoring locations in the Subbasin. This effort is intended to focus additional monitoring on existing sites to reduce costs. The existing wells were divided into 8 tiers based on criteria that relate to suitability of those well facilities for monitoring. Tiering was developed using four factors:

1. Known screened intervals or depth
2. Frequency of existing monitoring
3. Period of data record
4. Volume of existing data

In this analysis, the most ideal monitoring sites are represented by Tier 1, and less ideal monitoring sites are represented by the other tiers, down to Tier 8. The factors used for each tier are described below and in Table 1-1. Figure 1-1 shows the approximate locations of monitoring sites designated Tiers 1 through 7. Table 3-1 at the end of
this appendix provides a full listing of the wells in the tiering tool. This list excludes the handful of wells that are already part of the monitoring network.

Tier 1 wells

- Dedicated monitoring well
- With known screened intervals or depth, screened in 1 aquifer
- With existing semiannual or more frequent planned monitoring
- With at least 10 years of data (within the last 20 years)
- With at least 10 data points

Tier 2 wells

- With known screened intervals or depth, screened in 1 aquifer
- With existing semiannual or more frequent planned monitoring
- With at least 10 years of data (within the last 20 years)
- With at least 10 data points

Tier 3 wells

- With known screened intervals or depth, screened in 1 aquifer
- With existing semiannual or more frequent planned monitoring

Tier 4 wells

- With known screened intervals or depth, screened in 1 aquifer
- With existing annual or more frequent planned monitoring
- With at least 10 years of data (within the last 20 years)
- With at least 10 data points

Tier 5 wells

- With known screened intervals or depth, screened in 1 aquifer
- With existing annual or more frequent planned monitoring

Tier 6 wells

- With known screened intervals or depth, screened in 1 aquifer
- With at least 10 years of data (within the last 20 years)
- With at least 10 data points

Tier 7 wells

- With known screened intervals or depth, screened in 1 aquifer

Tier 8 wells

- No known screened intervals or depth
- Not used in analysis due to inability to evaluate which aquifers are measured

Table 1-1: Criteria for Well Tiering

Well Tier Criteria	1	2	3	4	5	6	7	8
Dedicated monitoring well	X							
Known screened intervals or depth, screened in 1 aquifer	X	X	X	X	X	X	X	
Existing semiannual or more frequent planned monitoring	X	X	X					
Existing annual or more frequent planned monitoring				X	X			
At least 10 years of data (within the last 20 years)	X	X		X		X		
At least 10 data points	X	X		X		X		

Figure 1-1: Well Tiers 1-7

Wells that did not meet the criteria for Tiers 1-7 were categorized as Tier 8 and were not used in subsequent analysis. The majority of these did not meet the criteria for Tiers 1-7 because of a lack of well construction information including depth and screened interval, which was used to categorize wells as above vs. below and outside of the Corcoran Clay.

1.2 Criteria Ranking and Weighting

Ideal future monitoring sites should be sited preferentially in areas of importance for groundwater monitoring and should consider factors such as depth to groundwater, location of screened intervals relative to the Corcoran Clay, distance to streams and rivers, distance to water quality issues, and more. This step of the analysis reviewed data collected about these factors, analyzed those data using Geographic Information Systems (GIS) to assign inclusion values for each criterion.

Criteria evaluation components include:

- Well tiering analysis
- Depth to groundwater, separately for wells in the 'Above Corcoran Clay' and 'Below or Outside Corcoran Clay' Principal Aquifers
- Distance to major rivers and streams
- Proximity to water quality concerns
- Rate of subsidence
- Distance to Subbasin boundary
- Distance to Natural Communities Commonly Associated with Groundwater (NCCAGs), used for the Above and Outside Corcoran Clay Principal Aquifers
- Locations of Disadvantaged Communities (DACs)
- Distance to stream gauging stations
- Locations of proposed sites in the Below Corcoran Clay Principal Aquifer, used as inputs for the Above Corcoran Clay Principal Aquifer only

Each criterion was broken down into two or more categories and then each category was ranked from 0 to 1 , where 0 is the least desirable and 1 is the most desirable new location. A weighting factor was used to differentiate the relative importance between data types.

Data were transformed into rasters according to the criteria, weights, and inclusion probabilities summarized in Table 1-2. The rasters were weighted, summed, and normalized using Esri ArcGIS Raster Calculator to develop the final raster of inclusion probabilities, with 0 as the least desirable and 1 as the most desirable new location. The resulting rasters are shown in Figure 1-2 to Figure 1-14 following Table 1-2.

Table 1-2: Weighted Site Analysis Inputs

Criteria	Rationale	Weighting Factor	Measurement	Ranking Value
Well tiering analysis	Prioritize wells with quality existing data and/or planned monitoring	2	Tier 1	1.0
			Tier 2	. 9
			Tier 3	. 8
			Tier 4	. 7
			Tier 5	. 6
			Tier 6	. 5
			Tier 7	. 4
			No Well or Tier 8	0
Depth to groundwater (above Corcoran Clay)	Prioritize shallowest and deepest groundwater	1	<10' or > $120{ }^{\prime}$	1.0
			10-20' or 100-120'	. 8
			20-30' or 80-100'	. 6
			$30-40^{\prime}$ or 60-80'	. 4
			40-60'	. 2

Criteria	Rationale	Weighting Factor	Measurement	Ranking Value
Depth to groundwater (below \& outside Corcoran Clay)	Prioritize shallowest and deepest groundwater	1	$\begin{gathered} <10^{\prime} \text { or }>250^{\prime} \\ 10-20^{\prime} \text { or } 200-250^{\prime} \\ 20-30^{\prime} \text { or } 150-200^{\prime} \\ 30-40^{\prime} \text { or } 100-150^{\prime} \\ 40-100^{\prime} \end{gathered}$	$\begin{gathered} 1.0 \\ .8 \\ .6 \\ .4 \\ .2 \end{gathered}$
Distance to major rivers and streams	Prioritize areas with groundwater / surface water interaction	1	$1 / 2$ mile 1 mile 1.5 miles 2 miles >2 miles	$\begin{gathered} 0 \\ 0.5 \\ 1.0 \\ 0.5 \\ 0 \end{gathered}$
Proximity to water quality concerns	Prioritize areas at risk of migration of poor quality water (TDS)	1	$\begin{gathered} >1,000 \mathrm{mg} / \mathrm{L} \\ 1,000-900 \mathrm{mg} / \mathrm{L} \\ 900-800 \mathrm{mg} / \mathrm{L} \\ 800-700 \mathrm{mg} / \mathrm{L} \\ 700-600 \mathrm{mg} / \mathrm{L} \\ 600-500 \mathrm{mg} / \mathrm{L} \\ <500 \mathrm{mg} / \mathrm{L} \end{gathered}$	$\begin{gathered} 1.0 \\ 0.9 \\ 0.8 \\ 0.7 \\ 0.6 \\ 0.5 \\ 0 \end{gathered}$
Rate of subsidence	Prioritize areas with subsidence issues	1	$>-0.6 \mathrm{ft} / \mathrm{yr}$ -0.6 to $-0.45 \mathrm{ft} / \mathrm{yr}$ -0.45 to $-0.3 \mathrm{ft} / \mathrm{yr}$ -0.3 to $-0.15 \mathrm{ft} / \mathrm{yr}$ -0.15 to $1 \mathrm{ft} / \mathrm{yr}$	$\begin{gathered} 1.0 \\ 0.9 \\ 0.8 \\ 0.7 \\ 0 \end{gathered}$
Distance to Subbasin boundary	Prioritize areas to understand subsurface flows	0.5	$1 / 4$ mile $1 / 2$ mile 1 mile 2 miles >2 miles	$\begin{gathered} 1.0 \\ .75 \\ .5 \\ .25 \\ 0 \end{gathered}$
Distance to NCCAGs (above \& outside Corcoran Clay)	Prioritize areas of ecological importance	1	$\begin{gathered} 1 \text { mile } \\ >1 \text { mile } \end{gathered}$	$\begin{gathered} 1.0 \\ 0 \end{gathered}$
Locations of DACs	Prioritize areas that benefit historically marginalized communities	1	Within DAC Outside DAC	$\begin{gathered} 1.0 \\ 0 \end{gathered}$
Distance to stream gauging stations	Prioritize areas to cross-correlate streamflow and groundwater monitoring data	0.5	$1 / 2$ mile 1 mile 1.5 miles 2 miles >2 miles	$\begin{gathered} 0 \\ 0.5 \\ 1.0 \\ 0.5 \\ 0 \end{gathered}$

Criteria	Rationale	Weighting Factor	Measurement	Ranking Value
Locations of proposed Below Corcoran Clay sites (Above Corcoran Clay)	Prioritize areas with potential to install nested wells	3	1 mile >1 mile	1.0 0

1.2.1 Well Tiering Processing

In order to prioritize monitoring sites as they relate to conditions affected by the Corcoran Clay, monitoring wells were sorted by their relationship to the Corcoran Clay. Groundwater conditions in Merced Subbasin vary based on their location in comparison with the Corcoran Clay, a regional aquitard that acts as a confining layer where present. Analysis was conducted to evaluate which monitoring sites are screened above the Corcoran Clay, below the Corcoran Clay, or outside the Corcoran Clay. This analysis was performed by comparing the depth and thickness of the Corcoran Clay at each well site to available information on well screens to categorize wells as Above, Below, or Outside the Corcoran Clay, or Unknown if there was no well screen information available.

Once separated into either above the Corcoran Clay or below or outside of the Corcoran Clay, analysis was performed by exporting Tier 1-7 wells from the database into GIS with a 0.5 -mile radius buffer surrounding each well to incorporate the local spatial zone represented by each well. Where well buffers overlapped, the lowest tier (meaning highest quality data) was prioritized.

Tiered wells above the Corcoran Clay are shown in Figure 1-2, and tiered wells below and outside of the Corcoran Clay are shown in Figure 1-3.

Figure 1-2: Well Tiers - Above Corcoran Clay

Figure 1-3: Well Tiers - Below and Outside Corcoran Clay

1.2.2 Depth to Groundwater

Depth to groundwater is a useful indicator for locating monitoring wells in locations that are the most beneficial for regional monitoring. Areas with deeper depths to water indicate potential management challenges and benefit more from increased monitoring density. Additionally, areas with very shallow groundwater (low depth to water) can benefit from monitoring if they support groundwater-dependent ecosystems or if they cause waterlogging issues.

Once separated into either above the Corcoran Clay or below or outside of the Corcoran Clay, analysis was performed by exporting depth to groundwater from the database into GIS. Figure 1-4 through Figure 1-6 show the depth to groundwater in each principal aquifer

Figure 1-4: Depth to Groundwater - Above Corcoran Clay

Figure 1-5: Depth to Groundwater - Below Corcoran Clay

Figure 1-6: Depth to Groundwater - Outside Corcoran Clay

1.2.3 Distance to Major Rivers and Streams

Analysis was also conducted to assign values to areas based on their distance from major rivers and streams (Figure 1-7). Areas within 1 to 1.5 miles of streams were rated higher for inclusion of new monitoring wells, as wells within this distance of streams are valuable for understanding surface water and groundwater interaction. ${ }^{1}$ Areas less than 0.5 miles and farther than 2 miles away from streams were rated the lowest in this criterion.

Figure 1-7: Distance to Major Rivers and Streams

${ }^{1}$ EDF (2018). Addressing Regional Surface Water Depletions in California: A Proposed Approach for Compliance with the Sustainable Groundwater Management Act. Retrieved from:
https://www.edf.org/sites/default/files/documents/edf_california_sgma_surface_water.pdf

1.2.4 Proximity to Water Quality Concerns

Areas near water quality concerns were prioritized as part of the beneficial monitoring analysis. Figure 1-8 identifies monitoring points where elevated levels of TDS were identified through analysis of the limited groundwater quality data in GAMA. Areas with higher regional TDS concentrations were prioritized in the analysis over areas with lower regional TDS concentrations. Note that this is not an exhaustive analysis of water quality conditions; other areas of water quality concerns exist for TDS and other constituents, and the areas identified here may not impact beneficial uses of water in the area.

Figure 1-8: Proximity to Water Quality Concerns

1.2.5 Rate of Subsidence

Subsidence information from the USBR SJRRP was used to prioritize areas in the Above and Below Corcoran Clay Principal Aquifers that have been experiencing subsidence. Areas that have experienced higher rates of subsidence are prioritized over areas that experienced less subsidence. Figure 1-9 shows total subsidence in the Subbasin from December 2012 through December 2020.

Figure 1-9: Rate of Subsidence

1.2.6 Distance to Subbasin Boundary

Subbasins as delineated by DWR in Bulletin 118 are used by SGMA to define areas to be managed by a GSP or coordinated GSPs. Conditions at a subbasin boundary are valuable to monitor to better understand groundwater flows at those locations for use in inter-basin agreements and in other technical analyses. Analysis in this criterion assigned higher values to areas near subbasin boundaries and lower values to areas further away from boundaries (Figure 1-10).

Figure 1-10: Distance to Subbasin Boundary

1.2.7 Distance to NCCAGs

Groundwater Dependent Ecosystems (GDEs) are defined in SGMA regulations as "ecological communities or species that depend on groundwater emerging from aquifers or on groundwater occurring near the ground surface". GDEs exist within the Merced Subbasin largely where vegetation accesses shallow groundwater for survival.

The Natural Communities Commonly Associated with Groundwater (NCCAG) database was used in the GSP as a part of the process to identify vegetation and wetlands commonly associated with groundwater. Analysis in this criterion assigned higher values to areas near NCCAG areas and lower values to areas further away from NCCAG areas (Figure 1-11).

Figure 1-11: Distance to NCCAGs

1.2.8 Locations of DACs

In this analysis, US Census American Community Survey (ACS) data was used to map the locations of disadvantaged communities (DACs). The ACS defines DACs as census tracts at less than 80% of the California's median household income. Analysis in this criterion assigned higher values to areas within DACs and lower values to areas outside DACs (Figure 1-12).

Figure 1-12: Locations of DACs

1.2.9 Distance to Stream Gauging Stations

Streamflow gauging stations monitored by DWR, USGS, Merced Irrigation District, and United States Army Corps of Engineers are located on the Merced and San Joaquin Rivers. Groundwater level monitoring near these sites would be useful for correlation with streamflows to better understand surface and groundwater interactions. This criterion assigned higher values to areas near streamflow gauging stations (Figure 1-13).

Figure 1-13: Distance to Stream Gauging Stations

1.2.10 Locations of Suggested Below Corcoran Clay Sites

New sites selected for monitoring in the Below Corcoran Clay Principal Aquifer have the potential to function as a new monitoring point for the Above Corcoran Clay Principal Aquifer through the installation of a nested groundwater level monitoring well. Thus, an additional criterion was added for only the Above Corcoran Clay Principal Aquifer which places extra weight within a 1-mile buffer of the locations of proposed additional Below Corcoran Clay Principal Aquifer monitoring wells (Figure 1-14).

Figure 1-14: Locations of Suggested Below Corcoran Clay Sites

1.3 Analysis Results

An overlay analysis was conducted in GIS to combine the values assigned to each criterion described in Table 1-2 into one map. In addition to having a specific ranking value for each category within a criterion, each criterion was assigned a weighting factor, to prioritize some criteria over others. GIS compilation of areas, values, and weighting resulted in a layer describing preferential sites for monitoring.

After calculating a final weighted probability layer, areas where the existing monitoring network has a density of 3.5 wells / 100 sq . mi. or higher were "zeroed out" (e.g. probability manually set to 0) to avoid siting new or expanded monitoring near the existing monitoring network. While the ultimate groundwater level monitoring density goal is 4 wells
/ 100 sq. mi., the threshold of 3.5 wells / 100 sq. mi. was used for this analysis to provide some additional buffer around existing clustered monitored areas.

Areas within 1 mile of the Corcoran Clay boundary or where the Corcoran Clay layer is less than 100 feet below the surface were also "zeroed out" to avoid monitoring areas of mixed aquifer conditions.

Figure 1-15 shows the preferential areas for monitoring sites screened in the Above Corcoran Clay Principal Aquifer. Areas in warm colors (red/orange/tan) are prioritized the highest for monitoring locations, while areas in cool colors (blue/green) are prioritized the lowest for monitoring locations. Areas in black have been removed from consideration due to proximity to existing wells, shallow Corcoran Clay, or the Subbasin boundary. The figure shows a preference for utilizing existing wells and for collocating wells, as the "dots" visible on the map represent locations of recommended monitoring sites screened in the Below Corcoran Clay Principal Aquifer.

Figure 1-15: Weighted Beneficial Monitoring Site Analysis Probability Raster - Above Corcoran Clay

Figure 1-16 shows the preferential areas for monitoring sites screened in the Below Corcoran Clay Principal Aquifer. Areas in warm colors (red/orange/tan) are prioritized the highest for monitoring locations, while areas in cooler colors (blue/green) are prioritized the lowest for monitoring locations. Areas in black have been removed from consideration due to proximity to existing wells, shallow Corcoran Clay, or the Subbasin boundary. The figure shows a preference for utilizing existing wells, as the orange and red "dots" visible on the map represent tiered existing wells.

Figure 1-16: Weighted Beneficial Monitoring Site Analysis Probability Raster - Below Corcoran Clay

Figure 1-17 shows the preferential areas for monitoring sites screened in the Outside Corcoran Clay Principal Aquifer. Areas in warmer colors (red/orange/tan) are prioritized the highest for monitoring locations, while areas in cooler colors (blue/green) are prioritized the lowest for monitoring locations. Areas in black have been removed from consideration due to proximity to existing wells or the Subbasin boundary.

Figure 1-17: Weighted Beneficial Monitoring Site Analysis Probability Raster - Outside Corcoran Clay

2. SITE IDENTIFICATION KRIGING ERROR ANALYSIS

This analysis focuses on the spatial nature of monitoring networks and uses kriging error to identify which areas are the most beneficial to establish new monitoring. Kriging is a technique often used to contour groundwater data in GIS. Errors in kriging quantify when there is insufficient data or inconsistent data in an area. These errors can be identified and used to identify areas in need of new monitoring.

2.1 Wells Used in Analysis

Input data for the kriging tool (Figure 2-1) consist of multiple data sources. Primarily, measurements come from fall 2020 groundwater level data obtained from the SGMA Data Viewer for existing wells within the Merced GSP monitoring
network. Groundwater level data outside the Subbasin were also obtained to help avoid edge effects when running kriging interpolation.

Many voluntary wells in the SGMA Data Viewer do not consistently report groundwater elevations each spring and fall. Also, in some cases, measurements for monitoring network wells were discounted due to nearby pumping or another data quality flag. A linear regression was applied to estimate the groundwater elevations for the missing seasons for wells with missing seasonal data located within the Merced Subbasin. The linear regression was applied separately at each well for fall and spring measurements where there were several years of historical data for each respective season.

Groundwater elevations were estimated from the interpolated groundwater elevation layers from the Merced GSP Water Year 2020 Annual Report for the newly installed or soon to be installed monitoring network wells described in the main Data Gaps Plan.

Finally, some measurements from TIWD wells were incorporated that are not reported in the SGMA Data Viewer.
Figure 2-1: Wells Used in Analysis

2.2 Kriging

There are multiple types of kriging that can be used depending on knowledge of the mean and trend patterns in the search neighborhood. Ordinary kriging was chosen as the kriging model for further analysis since groundwater elevation is unknown and the trend is approximately constant within the search neighborhood.

The kriging tools used were accessed within the Geostatistical Wizard of Esri ArcGIS and default settings were used to operate the tool. Figure 2-2 through Figure 2-4 show the results of the kriging for each principal aquifer. Note that the actual groundwater levels do not necessarily matter in the ultimate data gaps analysis - it is the level of uncertainty ("error") associated with the prediction that is of use (described further in Section 2.3).

Figure 2-2: Groundwater Surface Elevation - Above Corcoran Clay

Figure 2-3: Groundwater Surface Elevation - Below Corcoran Clay

Figure 2-4: Groundwater Surface Elevation - Outside Corcoran Clay

2.3 Kriging Standard Error

Kriging can also quantify uncertainty (or "standard error") based on the availability of monitoring data. Figure 2-5, Figure 2-6, and Figure 2-7 show the amount of standard error associated with the kriging performed in Figure 2-2, Figure 2-3, and Figure 2-4 for groundwater levels above, below, and outside the Corcoran Clay, respectively.
Standard error in kriging quantifies when there is insufficient data or inconsistent data in an area. This standard error can be used to identify areas in need of new or expanded monitoring. Areas with high standard error are areas that strongly benefit from increased groundwater level monitoring. Combining this analysis with the weighted beneficial monitoring site analysis is valuable for siting new monitoring locations, as discussed in the next section.

Figure 2-5: Kriging Error for Groundwater Surface Elevation - Above Corcoran Clay

Figure 2-6: Kriging Error for Groundwater Surface Elevation - Below Corcoran Clay

Figure 2-7: Kriging Error for Groundwater Surface Elevation - Outside Corcoran Clay

3. COMBINING RECOMMENDED MONITORING ANALYSES

The weighted beneficial monitoring site analysis and kriging error analysis results were combined using the Esri ArcGIS Densify Sampling Network tool to identify strong locations for future monitoring sites. This section describes the Densify Sampling Network tool and presents the results of the use of the tool.

3.1 Densify Sampling Network Tool and Settings

The Densify Sampling Network tool is a standalone tool in Esri ArcGIS. The Densify Sampling Network tool builds upon an existing monitoring network by determining the best locations for adding new sampling points based on available information.

The Densify Sampling Network tool uses the distribution of standard error generated by the kriging interpolation layer generated in Section 2 to place new monitoring points in areas that would minimize the overall standard error for estimation of groundwater elevation, and the probability layer generated in Section 1 to weight where new monitoring locations should be placed based on other known characteristics. Lastly, an inhibition distance was set to make sure that new monitoring locations are not placed too close to each other.

Choices for several inputs to the tool are described below:

- Probability Layer, Weighted - The probability layer indicates the likelihood that a location should be selected as a monitoring location based on weighted values (Section 1).
- Kriging Error - The kriging error quantifies when there is insufficient data or inconsistent data in an area to identify areas in need of new monitoring wells (Section 2).
- Inhibition Distance - The inhibition distance should be set to limit the proximity of recommended monitoring sites. This prevents recommended sites from being too close together to be valuable. An inhibition distance of 5.6 miles corresponds to the DWR guidance of 4 wells / 100 sq . mi. However, a lower inhibition distance of 4.4 miles was selected to allow for sites to exceed this goal and create full coverage within areas not zeroed out (as described in Section 1.3).
- Number of Monitoring Sites - To calculate the number of additional wells recommended, a weighting scheme was developed to calculate the area of each aquifer that requires additional wells to meet the network density goal of 4 wells / 100 sq . mi. Areas with an existing lower density of wells were weighted more strongly while areas with an existing higher density of wells were weighted more weakly. More specifically, the existing map of network density in each principal aquifer was categorized into intervals of 0.05 from 0 to 4 wells / 100 sq. mi. (e.g. 0.05 to 0.10 wells / 100 sq . mi, 0.10 to 0.15 wells / 100 sq . mi., and so on). The areas associated with each interval were then weighted equally from 1 to 0 , with the lowest density areas weighted at 1 and the highest density areas weighted at 0 . Areas and weights were multiplied and then summed (e.g. 10 acres weighted at 0.5 would result in 5 acres contributing to the sum of area needing additional wells). The resulting sum of the weighted area was used to calculate the number of additional wells recommended to achieve an overall network density of 4 wells / 100 sq . mi., assuming equal spacing between new wells.
- Above the Corcoran Clay - The total weighted area requiring additional monitoring wells is 311 sq. mi.. At 4 wells / 100 sq . mi., this translates to 13 additional monitoring wells recommended.
- Below the Corcoran Clay - The total weighted area requiring additional monitoring wells is 206 sq . mi.. At 4 wells / 100 sq. mi., this translates to 9 additional monitoring wells recommended.
- Outside the Corcoran Clay - The total weighted area requiring additional monitoring wells is 132 sq. mi.. At 4 wells / 100 sq. mi., this translates to 6 additional monitoring wells recommended.

3.2 Results from Densify Sampling Network Tool

The recommended monitoring sites as calculated by the Densify Sampling Network Tool are presented in Figure 3-1 through Figure 3-6. Recommended monitoring sites are labeled with their rank (with 1 as the most desirable and higher numbers as relatively less desirable locations).

- Figure 3-1 shows the recommended monitoring sites for groundwater above the Corcoran Clay, displayed over the beneficial monitoring site analysis probability results.
- Figure 3-2 shows the same recommended monitoring sites for groundwater above the Corcoran Clay, displayed over the kriging error site analysis probability results.
- Figure 3-3 shows the recommended monitoring sites for groundwater below the Corcoran Clay, displayed over the beneficial monitoring site analysis probability results.
- Figure $3-4$ shows the same recommended monitoring sites for groundwater below the Corcoran Clay, displayed over the kriging error site analysis probability results.
- Figure 3-5 shows the recommended monitoring sites for groundwater outside the Corcoran Clay, displayed over the beneficial monitoring site analysis probability results.
- Figure 3-6 shows the same recommended monitoring sites for groundwater outside the Corcoran Clay, displayed over the kriging error site analysis probability results.

Figure 3-1: Weighted Beneficial Monitoring Site Analysis Probability Raster and Recommended Monitoring Sites - Above Corcoran Clay

Figure 3-2: Kriging Error and Recommended Monitoring Sites - Above Corcoran Clay

Figure 3-3: Weighted Beneficial Monitoring Site Analysis Probability Raster and Recommended Monitoring Sites - Below Corcoran Clay

Figure 3-4: Kriging Error and Recommended Monitoring Sites - Below Corcoran Clay

Figure 3-5: Weighted Beneficial Monitoring Site Analysis Probability Raster and Recommended Monitoring Sites - Outside Corcoran Clay

Figure 3-6: Kriging Error and Recommended Monitoring Sites - Outside Corcoran Clay

Table 3-1: Well Tier Locations
(begins on next page)

3		CCID WELL \#1	37.14	-120.99	Above
3		Los Banos Well No. 6	37.06186	-120.8659	Above
3		Los Banos Well No. 7	37.06198	-120.8293	Above
3		Los Banos Well No. 9	37.06873	-120.8428	Above
3		Los Banos Well No. 10	37.05308	-120.8258	Above
3		Los Banos Well No. 11	37.05605	-120.8836	Above
3		Los Banos Well No. 12	37.05231	-120.8684	Above
3		Los Banos Well No. 13	37.06347	-120.8694	Above
3		Los Banos Well No. 14	37.07932	-120.8496	Above
3		Los Banos Well No. 15	37.07057	-120.8763	Above
3		R7	37.178367	-120.618537	Above
3		SL1	37.173981	-120.773752	Above
3		SL2	37.207581	-120.821949	Above
3		SL3	37.173332	-120.788244	Above
3		WBC1	37.263566	-120.842104	Above
3		WBC2	37.263481	-120.832962	Above
3		WBC3	37.27807	-120.842104	Above
3 11S13E13R002M	32643	CCID 66	36.9818	-120.979	Above
5		Grasslands Well \#12	37.18319167	-120.9495361	Above
5		Grasslands Well \#11	37.18877778	-120.9053083	Above
5		Grasslands Well \#10	37.19460556	-120.9206556	Above
5		Grasslands Well \#9	37.14431389	-120.8739194	Above
5		Grasslands Well \#8	37.09949167	-120.8219306	Above
5		Grasslands Well \#7	37.03021667	-120.7806194	Above
5		Grasslands Well \#6	36.99826389	-120.7999861	Above
5		Grasslands Well \#5	36.99320278	-120.7085833	Above
5		Grasslands Well \#2	36.93765833	-120.7006444	Above
3 10S10E29N002M	31580	370307N1209082W001	37.0307	-120.9082	Above
610 S10E32B001M	31585	370271N1208996W001	37.0271	-120.8996	Above
$611 \mathrm{S10E01E001M}$	13232	370060N1208363W001	37.006	-120.8363	Above
$611 \mathrm{S10E24N001M}$	33951	369549N1208371W001	36.9549	-120.8371	Above
610 11E17E001M	30429	370660N1207963W001	37.066	-120.7963	Above
3 06S10E21N002M	6618	373907N1208835W001	37.3907	-120.8835	Above
6 10S10E21P001M	10739	370424N1208816W001	37.0424	-120.8816	Above
$611 \mathrm{S10E02Q001M}$	33646	370005N1208429W001	37.0005	-120.8429	Above
$611 \mathrm{S10E03M001M}$	33647	370021N1208713W001	37.0021	-120.8713	Above
$611 \mathrm{S10E04D001M}$	33648	370102N1208907W001	37.0102	-120.8907	Above
$611 \mathrm{S10E04G001M}$	33649	370060N1208821W001	37.006	-120.8821	Above
$611 \mathrm{S10E05D001M}$	33650	370102N1209057W001	37.0102	-120.9057	Above
611 S10E23B003M	33664	369680N1208463W001	36.968	-120.8463	Above
$611 \mathrm{S10E23K003M}$	33665	369618N1208460W001	36.9618	-120.846	Above
$606 S 11$ E29J001M	28446	373813N1207782W001	37.3813	-120.7782	Above
6 06S11E32L001M	28447	373671N1207879W001	37.3671	-120.7879	Above
611 S10E14L001M	39066	369760N1208485W001	36.976	-120.8485	Above
$610 \mathrm{S10E33M001M}$	38977	370185N1208904W001	37.0185	-120.8904	Above
6 08S10E30E001M	8754	372110N1209213W001	37.211	-120.9213	Above
6 06S11E18E001M	7346	374157N1208129W001	37.4157	-120.8129	Above
3 308S13E31A001M	9628	371971N1205813W001	37.1971	-120.5813	Above

$608 S 12 \mathrm{E} 14 \mathrm{D} 001 \mathrm{M}$	9459	372438N1206335W001	37.2438	-120.6335	Above
308S13E19H002M	9482	372235N1205793W001	37.2235	-120.5793	Above
6 06S09E13H001M	5738	374130N1209224W001	37.413	-120.9224	Above
$611 \mathrm{~S} 10 \mathrm{E} 23 \mathrm{B002M}$	13930	369691N1208427W001	36.9691	-120.8427	Above
$610 \mathrm{S10E32P002M}$	11671	370157N1209004W001	37.0157	-120.9004	Above
610 S 10 E 22 J 001 M	10741	370463N1208554W001	37.0463	-120.8554	Above
6 10S10E33H001M	11269	370216N1208746W001	37.0216	-120.8746	Above
$610 \mathrm{S10E34A001M}$	11270	370271N1208571W001	37.0271	-120.8571	Above
3 10S10E34C001M	11271	370271N1208654W001	37.0271	-120.8654	Above
6 10S10E36N002M	11276	370132N1208329W001	37.0132	-120.8329	Above
$610 \mathrm{S11E07K002M}$	11281	370768N1208074W001	37.0768	-120.8074	Above
3 10S09E13J001M	12681	370630N1209266W001	37.063	-120.9266	Above
610 S 10 E 26 E 001 M	10749	370368N1208502W001	37.0368	-120.8502	Above
$610 \mathrm{S10E32A002M}$	10765	370263N1208982W001	37.0263	-120.8982	Above
609810 E 36 P 001 M	12397	370993N1208213W001	37.0993	-120.8213	Above
3 11S12E30H001M	14768	369485N1206907W001	36.9485	-120.6907	Above
3 10S11E30D001M	11308	370416N1208127W001	37.0416	-120.8127	Above
$611 \mathrm{S10E03P001M}$	13896	369982N1208671W001	36.9982	-120.8671	Above
3 11S10E04R001M	13900	369985N1208766W001	36.9985	-120.8766	Above
$611 \mathrm{S10E14N001M}$	13921	369696N1208527W001	36.9696	-120.8527	Above
$610 \mathrm{S12E17M001M}$	15004	370593N1206893W001	37.0593	-120.6893	Above
6 O6S10E15Q002M	6603	374063N1208568W001	37.4063	-120.8568	Above
$611 \mathrm{S11E12P003M}$	15328	369857N1207177W003	36.9857	-120.7177	Above
3 O6S10E28K001M	6626	373821N1208752W001	37.3821	-120.8752	Above
$610 \mathrm{S10E32K003M}$	10768	370202N1208985W001	37.0202	-120.8985	Above
3 10S10E35K001M	30307	370185N1208416W001	37.0185	-120.8416	Above
610 S09E01R001M	11984	370880N1209257W001	37.088	-120.9257	Above
6 10S10E01M001M	12838	370899N1208316W001	37.0899	-120.8316	Above
3 10S10E02J001M	12840	370916N1208427W001	37.0916	-120.8427	Above
610 S10E05P001M	12846	370866N1208993W001	37.0866	-120.8993	Above
$610 \mathrm{S10E11D001M}$	12854	370843N1208527W001	37.0843	-120.8527	Above
3 10S11E18K001M	30430	370605N1208038W001	37.0605	-120.8038	Above
710 S10E32J002M	31586	370185N1208941W001	37.0185	-120.8941	Above
3 10S09E01J001M	11982	370916N1209279W001	37.0916	-120.9279	Above
7 08S09E09A003M	8033	372605N1209763W001	37.2605	-120.9763	Above
7 08S09E21N002M	8046	372166N1209943W001	37.2166	-120.9943	Above
7 08S09E34P001M	8733	371893N1209693W001	37.1893	-120.9693	Above
3 11S10E13N001M	13919	369699N1208371W001	36.9699	-120.8371	Above
7 10S10E04K001M	12845	370921N1208771W001	37.0921	-120.8771	Above
7		SD-7	37.3452926	-120.9447874	Above
7		SD-6	37.33958375	-120.9340626	Above
7		SD-4	37.32521116	-120.8297079	Above
7		SD-3	37.34364282	-120.8335678	Above
7		SD-2	37.32706709	-120.9047712	Above
7		SD-15	37.35451934	-120.9141781	Above
7		SD-13	37.32413175	-120.9246743	Above
7		SD-1	37.30562036	-120.8313328	Above
7		S-9	37.32270621	-120.8237292	Above

7			S-22	37.32884793	-120.828257	Above
7			S-11	37.33524778	-120.829408	Above
7			S-10	37.33046276	-120.8153162	Above
7			MW-3D	37.33914798	-120.9420335	Above
7			MW-2C	37.32795302	-120.9297464	Above
7			MW-1D	37.307877	-120.9032049	Above
7			MW-1C	37.30788535	-120.9031535	Above
7			MP-4	37.27576924	-120.7587965	Above
7			MP-20	37.26632506	-120.7576852	Above
7			MP-18	37.2943797	-120.7771307	Above
7			MP NG	37.28632442	-120.7707415	Above
7			M-9	37.31954964	-120.8588186	Above
7			M-22	37.33038376	-120.8885136	Above
7			M-2	37.31349746	-120.8258916	Above
7			M-18	37.33107453	-120.8446857	Above
7			M-17	37.32063628	-120.891628	Above
7			M-11	37.33062482	-120.8659495	Above
7			M-10	37.32143892	-120.8520739	Above
7			SD-8	37.31108435	-120.914872	Above
7			SD-19	37.29844443	-120.8328856	Above
7			SD-10	37.34824149	-120.9454131	Above
7			MW-3B	37.33918998	-120.9420364	Above
7			MW-3A	37.33922591	-120.9420386	Above
7			MW-2B	37.32794892	-120.9296964	Above
7			MW-1B	37.30789087	-120.9031036	Above
7			MW-1A	37.30789673	-120.9030538	Above
7			Grasslands Well \#13	37.26135	-120.9540361	Above
7			CCID WELL \#22B	37.26	-121.02	Above
7			SD-11	37.34645143	-120.9341226	Above
7			SD-14	37.35614812	-120.9139869	Above
7			MP-24	37.28160225	-120.7785194	Above
8			CCID WELL \#48A	37.07	-120.88	Above
8	12S11E17R001M	5255	PWD 5	36.8941	-120.793	Above
3 (estimate)			MW-14D	37.289976	-120.670523	Above
3 (estimate)			MW-9	37.269646	-120.665254	Above
3 (estimate)			MW-4D	37.284225	-120.636533	Above
3 (estimate)			MW-6D	37.273414	-120.658586	Above
3 (estimate)			MW-7D	37.273363	-120.648103	Above
3 (estimate)			DW9	37.320231	-120.859135	Above
3 (estimate)			DW16	37.326273	-120.892069	Above
3 (estimate)			DW17	37.320796	-120.891895	Above
3 (estimate)			DW18	37.330651	-120.843364	Above
	09S10E16R001M	12242	371435N1208713W001	37.1435	-120.8713	Below
2	09S14E33A001M	31740	371116N1204374W001	37.1116	-120.4374	Below
2	05S11E33N003M	27312	374507N1207741W001	37.4507	-120.7741	Below
3	09S13E14A001M	47696	371428N1205110W001	37.142765	-120.51097	Below
3	10S10E32L001M	48599	370173N1208999W001	37.0173	-120.8999	Below
3	,	48499	373968N1208146W001	37.396679	-120.813493	Below

	07S14E35E001M	47542	372904N1204207W001	37.290377	-120.452882	Below
3	07S14E35E002M	47543	372904N1204529W001	37.290377	-120.452882	Below
3	07S14E35E003M	47544	372904N1204529W002	37.290377	-120.452882	Below
3	07S14E35E004M	47545	372904N1204529W003	37.290377	-120.452882	Below
3	07S14E30R002M	47547	372964N1204867W002	37.296393	-120.486709	Below
3	07S14E30R003M	47548	372964N1204867W003	37.296393	-120.486709	Below
3	07S14E30R004M	47549	372964N1204867W004	37.296393	-120.486709	Below
3	07S13E34G001M	47564	372806N1205241W001	37.280602	-120.524113	Below
3	08S14E06G001M	47565	372617N1204747W001	37.26173	-120.474609	Below
3	12S11E03Q003M	48544	369094N1207520WV001	36.9094	-120.752	Below
3	10S10E25N001M	10747	370291N1208357W001	37.0291	-120.8357	Below
8	07S13E30R002M	10213	372907N1205779W001	37.290771	-120.578124	Below
3	07S13E32H001M	38974	372838N1205602W001	37.283902	-120.560075	Below
3	12S11E03P001M	48541	369112N1207584WV001	36.9112	-120.7584	Below
3	12S11E03Q001M	48542	369097N1207554W001	36.9097	-120.7554	Below
3	12S11E11C001M	48548	369057N1207373W001	36.9057	-120.7373	Below
8	07S11E07H001M	8454	373388N1207968W001	37.338796	-120.798821	Below
3	06S10E08H001M	5909	374296N1208907W001	37.42986	-120.890656	Below
3	08S14E15R002M	10200	372335N1204199W001	37.232376	-120.420027	Below
3	09S09E06Q001M	31799	371743N1210224W001	37.1743	-121.0224	Below
3	09S15E06P001M	10851	371710N1203746W001	37.171	-120.3746	Below
3	09S15E02A001M	10849	371821N1202927W001	37.1821	-120.2927	Below
3		51142	372604N1210611W001	37.2604	-121.0611	Below
3	06S11E17C001M	28534	374177N1207888W001	37.41791	-120.787941	Below
3	09S14E27R001M	10832	CH7	37.116	-120.4207	Below
3	11S10E05L001M	33651	370021N1209010WV001	37.0021	-120.901	Below
6	11S10E23R002M	39068	369574N1208393W001	36.9574	-120.8393	Below
3	08S14E03L001M	9638	372630N1204260W001	37.263	-120.426	Below
3	08S14E20J001M	7525	372213N1204527W001	37.2213	-120.4527	Below
3	08S14E30G001M	7530	372102N1204752W001	37.2102	-120.4752	Below
3	08S15E07J001M	7542	372496N1203632W001	37.2496	-120.3632	Below
3	08S12E15C001M	9461	372438N1206429W002	37.2438	-120.6429	Below
6	08S13E18A002M	9480	372438N1205793W001	37.2438	-120.5793	Below
3	08S16E31C001M	8235	371993N1202638W001	37.1993	-120.2638	Below
3	06S10E05D001M	5900	374485N1209029W001	37.4485	-120.9029	Below
3	10S09E12J002M	12680	370755N1209260WV02	37.0755	-120.926	Below
6	08S14E13L002M	10194	372360N1203913W001	37.236	-120.3913	Below
3	05S11E27K001M	5685	374699N1207441W001	37.4699	-120.7441	Below
3	10S10E2OH001M	10601	370513N1208938W001	37.0513	-120.8938	Below
3	09S14E01B001M	13120	371852N1203899WV001	37.1852	-120.3899	Below
3	08S15E36G001M	27944	371935N1202799WV001	37.1935	-120.2799	Below
7		47697	371115N1207377W001	37.356652	120.677443	Below
3	09S14E27R001M	10832	CH7	37.116639	-120.419273	Below
7			SD-18	37.30663007	-120.8973773	Below
7			S-18	37.33050506	-120.832503	Below
7			S-12	37.35674767	-120.9657456	Below
7			MP-5	37.2810467	-120.7799083	Below
8			Well 06	37.321012	-120.526746	Below

8	,		Well 05	37.329973	-120.545398	Below
	07S1314E01M		Well 04	37.32839	-120.522394	Below
8	8		MP-23	37.29410196	-120.7737973	Below
8			MP-22	37.29354622	-120.797409	Below
8			MP-21	37.27410263	-120.7579631	Below
8			P17	37.16748	-120.66	Below
8	8		P18	37.1761	-120.6688	Below
	09S13E32A001M	13117		37.113	-120.5654	Below
3	3	50938	09S15E01A	37.182	-120.2748	Below
	08S15E34L001M	8096		37.1905	-120.3166	Below
	08S12E31M001M	9468		37.1924	-120.706	Below
	08S14E11K001M	30271		37.2507	-120.4032	Below
	07S11E20Q001M	8611		37.3024	-120.7854	Below
	07S11E21P001M	8612		37.3049	-120.7735	Below
3 (estimate)			DW106	37.29651	-120.63352	Below
	05S12E27A001M	9603	374741N1206343W001	37.4741	-120.6343	Outside
2	05S12E08P001M	9587	375096N1206804W001	37.5096	-120.6804	Outside
	05S12E18C001M	9596	375043N1206985W001	37.5043	-120.6985	Outside
2	05S12E22H001M	9600	374852N1206310W001	37.4852	-120.631	Outside
	05S11E22B001M	5682	374921N1207468W001	37.4921	-120.7468	Outside
2	08S08E15G001M	10781	372424N1210754W001	37.2424	-121.0754	Outside
2	05S11E13A001M	27305	375046N1207071W001	37.5046	-120.7071	Outside
2	2		Atwater Well \#13	37.364594	-120.607616	Outside
2	2		Atwater Well \#14	37.358638	-120.614426	Outside
2	2		Atwater Well \#16	37.357586	-120.585896	Outside
2	2		Atwater Well \#17	37.360085	-120.601194	Outside
2	2		Atwater Well \#18	37.349565	-120.587247	Outside
2	2		Atwater Well \#19	37.366942	-120.595296	Outside
	07S13E07H001M		Atwater Well \#20	37.3407	-120.5774	Outside
2	2		WELL CMP 01A	37.3144779	-120.4760419	Outside
2	2		WELL CMP 01C	37.31412914	-120.4762414	Outside
2	2		WELL CMP 07C	37.3247192	-120.4432536	Outside
2	2		WELL CMP 09	37.32606709	-120.4878104	Outside
2	2		WELL CMP 10	37.32454101	-120.4439588	Outside
2	,		WELL CMP 11	37.33103407	-120.4665782	Outside
2	,		WELL PLN 1	37.28916327	-120.3242134	Outside
2	,		WELL PLN 3	37.28979735	-120.3150682	Outside
2	2		WELL PLN 7	37.31310283	-120.3250477	Outside
2	2		WELL WIN 14	37.39583835	-120.608396	Outside
2			WELL WIN 15	37.40326292	-120.5757904	Outside
3		48518	372173N1210767W001	37.2173	-121.0767	Outside
3	09S08E24R001M	48519	371334N1210349W001	37.1334	-121.0349	Outside
	07S13E09A001M	10051	373457N1205429W001	37.346073	-120.540893	Outside
	07S12E07C001M	47541	373496N1205890W001	37.349553	-120.588971	Outside
	07S14E16F001M	47550	373260N1204432W001	37.326034	-120.44316	Outside
3	07S14E16F002M	47551	373260N1204432W002	37.326034	-120.44316	Outside
	07S14E16F003M	47552	373260N1204432W003	37.326034	-120.44316	Outside
3	07S14E16F004M	47553	373260N1204432W004	37.326034	-120.44316	Outside

3 307S13E13H001M	47554	373260N1204880W001	37.326034	-120.48801	Outside
$307 \mathrm{~S} 13 \mathrm{E} 13 \mathrm{H002M}$	47555	373260N1204880W002	37.326034	-120.48801	Outside
3 07S13E13H003M	47556	373260N1204880W003	37.326034	-120.48801	Outside
3 07S13E13H004M	47557	373260N1204880W004	37.326034	-120.48801	Outside
3 06S12E21M001M	47558	373904N1206678W001	37.391335	-120.667777	Outside
$307 \mathrm{S15E15N001M}$	47559	372734N1203071W001	37.273319	-120.307047	Outside
3 07S15E30D001M	47560	372734N1203071W002	37.29644	-120.374873	Outside
3 07S15E18G001M	47561	373220N1203672W001	37.221989	-120.367155	Outside
3 06S12E17M001M	47563	374074N1206859W001	37.407365	-120.685907	Outside
3 06S12E23P001M	47574	370000N1200000W001	37.389728	-120.623156	Outside
3 06S12E23C001M	47575	370000N1200000W002	37.403414	-120.622813	Outside
3	50448	375311N1205714W001	37.5311	-120.5714	Outside
3 08S16E34J001M	28392	371902N1201985W001	37.1902	-120.1985	Outside
3	48517	372406N1210751W001	37.2406	-121.0751	Outside
3 06S13E04H001M	38884	374421N1205407W001	37.44218	-120.540659	Outside
3 07S14E12N001M	7955	373327N1203960W001	37.332776	-120.395745	Outside
3 07S15E32A001M	8673	372880N1203432W001	37.288	-120.3432	Outside
3		WELL WIN 16	37.40367653	-120.6225708	Outside
3		WELL PLN 5	37.28436835	-120.3226814	Outside
3		WELL PLN 4	37.29124817	-120.3208053	Outside
3		WELL LG 4	37.2329057	-120.2573823	Outside
3		WELL LG 2	37.23152459	-120.254924	Outside
3		WELL LG 1A	37.22721001	-120.2485223	Outside
3		WELL CMP 07B	37.32450258	-120.4439897	Outside
3		WELL CMP 07A	37.32446696	-120.444172	Outside
3		WELL CMP 01B	37.31432128	-120.4756878	Outside
3		WELL BRK 2	37.32372445	-120.448045	Outside
3		WELL BRK 1	37.32025423	-120.4449318	Outside
3		Atwater Well \#21	37.377761	-120.55865	Outside
3		Atwater Well \#15	37.339709	-120.600926	Outside
3	50447	EWD 03	37.5136	-120.6739	Outside
4		WELL 183P	37.4112082	-120.6564805	Outside
4		WELL 184	37.39675211	-120.6534174	Outside
4		WELL 231P	37.42197826	-120.6151249	Outside
4		WELL 234P	37.41057178	-120.6312242	Outside
$607 S 14 \mathrm{E} 16 \mathrm{R001M}$	27646	373182N1204335W001	37.3182	-120.4335	Outside
$607 S 14 \mathrm{E} 17 \mathrm{D} 001 \mathrm{M}$	27647	373316N1204685W001	37.3316	-120.4685	Outside
$607 S 14 \mathrm{E} 22$ Q001M	27649	373055N1204238W001	37.3055	-120.4238	Outside
$607 \mathrm{S14E24H001M}$	27650	373124N1203788W001	37.3124	-120.3788	Outside
$608508 \mathrm{E} 28 \mathrm{B001M}$	27677	372166N1210949W001	37.2166	-121.0949	Outside
$608508 E 35 R 001 \mathrm{M}$	27680	371891N1210504W001	37.1891	-121.0504	Outside
609508 E 03 K 001 M	33075	371799N1210727W001	37.1799	-121.0727	Outside
$609508 E 13 \mathrm{D} 001 \mathrm{M}$	33077	371585N1210499W001	37.1585	-121.0499	Outside
609508 E 24 A 001 M	33079	371416N1210329W001	37.1416	-121.0329	Outside
609508 E 24 J 001 M	33080	371349N1210338W001	37.1349	-121.0338	Outside
$607 S 15$ E32N001M	31519	372743N1203610W001	37.2743	-120.361	Outside
$607 S 15$ E34R001M	31520	372735N1203071W001	37.2735	-120.3071	Outside
6 607S15E31B001M	31518	328263N1203702W001	37.2863	-120.3702	Outside

6	O6S12E27N001M	28863	$373752 N 1206457 W 001$	37.3752

6 06S13E31A001M	38885	373735N1205768W001	37.3735	-120.5768	Outside
$607 S 14 \mathrm{E} 05 \mathrm{~N} 001 \mathrm{M}$	38895	373468N1204682W001	37.3468	-120.4682	Outside
$607 S 15 E 29 Q 001 \mathrm{M}$	38897	372910N1203518W001	37.291	-120.3518	Outside
$605 \mathrm{S12E07P001M}$	38967	375102N1206968W001	37.5102	-120.6968	Outside
6 07S13E06Q001M	38971	373488N1205824W001	37.3488	-120.5824	Outside
$606 S 12 \mathrm{E} 12 \mathrm{~F} 001 \mathrm{M}$	38879	374260N1206035W001	37.426	-120.6035	Outside
6 06S12E25D001M	38880	373888N1206113W001	37.3888	-120.6113	Outside
$608 S 16 \mathrm{E} 19 \mathrm{D} 001 \mathrm{M}$	39735	372282N1202663W001	37.2282	-120.2663	Outside
$607815 \mathrm{E} 30 \mathrm{N001M}$	40099	372888N1203785W001	37.2888	-120.3785	Outside
$606 S 13 E 05 J 001 \mathrm{M}$	39867	374382N1205621W001	37.4382	-120.5621	Outside
604 S 12 E 36 N 001 M	38084	375393N1206043W001	37.5393	-120.6043	Outside
6 06S12E36H001M	5783	373713N1205963W001	37.3713	-120.5963	Outside
608509 E 36 L 002 M	8736	371935N1210421W001	37.1935	-121.0421	Outside
6 06S12E36A001M	5782	373743N1205963W001	37.3743	-120.5963	Outside
6 05S12E07R001M	9586	375096N1206857W001	37.5096	-120.6857	Outside
6 05S12E11K001M	9590	375124N1206210W001	37.5124	-120.621	Outside
$605 S 12 \mathrm{E} 12 \mathrm{E} 001 \mathrm{M}$	9591	375157N1206124W001	37.5157	-120.6124	Outside
3 05S12E12L001M	9592	375091N1206074W001	37.5091	-120.6074	Outside
$605 S 12 \mathrm{E} 14 \mathrm{E001M}$	9593	374982N1206293W001	37.4982	-120.6293	Outside
$605 S 12 \mathrm{E} 14 \mathrm{M} 001 \mathrm{M}$	9594	374955N1206271W001	37.4955	-120.6271	Outside
$605 S 12 \mathrm{E} 16 \mathrm{R001M}$	9595	374941N1206507W001	37.4941	-120.6507	Outside
$605 S 12 \mathrm{E} 19 \mathrm{B001M}$	9598	374913N1206916W001	37.4913	-120.6916	Outside
$605 \mathrm{S12E23P001M}$	9601	374774N1206254W001	37.4774	-120.6254	Outside
3 05S12E26N001M	9602	374624N1206282W001	37.4624	-120.6282	Outside
$607 S 12 \mathrm{E} 12 \mathrm{~A} 001 \mathrm{M}$	9331	373452N1205960W001	37.3452	-120.596	Outside
$605 S 12 \mathrm{E} 30 \mathrm{D} 001 \mathrm{M}$	10148	374738N1206993W001	37.4738	-120.6993	Outside
$605 S 12 \mathrm{E} 31 \mathrm{G001M}$	10149	374582N1206907W001	37.4582	-120.6907	Outside
$605 S 12 \mathrm{E} 33 \mathrm{~N} 001 \mathrm{M}$	10152	374493N1206671W001	37.4493	-120.6671	Outside
6 05S12E34A001M	10153	374591N1206338W001	37.4591	-120.6338	Outside
$607 \mathrm{S12E01D001M}$	8622	373596N1206129W001	37.3596	-120.6129	Outside
$607 \mathrm{S12E01N001M}$	8623	373471N1206141W001	37.3471	-120.6141	Outside
6 07S14E10N001M	7954	373321N1204324W001	37.3321	-120.4324	Outside
$607 S 14 \mathrm{E} 14 \mathrm{~A} 001 \mathrm{M}$	7957	373310N1203966W001	37.331	-120.3966	Outside
$607 S 14 \mathrm{E} 15 \mathrm{H} 001 \mathrm{M}$	7959	373277N1204146W001	37.3277	-120.4146	Outside
$607 S 14 \mathrm{E} 17 \mathrm{~A} 001 \mathrm{M}$	7960	373316N1204513W001	37.3316	-120.4513	Outside
$607 S 14 \mathrm{E} 17 \mathrm{N001M}$	7961	373188N1204688W001	37.3188	-120.4688	Outside
$607 S 14 \mathrm{E} 17 \mathrm{R001M}$	7962	373185N1204513W001	37.3185	-120.4513	Outside
$607 S 14 \mathrm{E} 22 \mathrm{G} 001 \mathrm{M}$	7963	373113N1204238W001	37.3113	-120.4238	Outside
$607 S 14 \mathrm{E} 22 \mathrm{R} 001 \mathrm{M}$	7964	373052N1204154W001	37.3052	-120.4154	Outside
$607 S 14 \mathrm{E} 24 \mathrm{D} 001 \mathrm{M}$	7965	373174N1203952W001	37.3174	-120.3952	Outside
$607 S 14 \mathrm{E} 24 \mathrm{N001M}$	7966	373030N1203966W001	37.303	-120.3966	Outside
6 06S12E10E001M	5067	374271N1206474W001	37.4271	-120.6474	Outside
6 06S12E11J001M	5068	374255N1206143W001	37.4255	-120.6143	Outside
$606 S 12 \mathrm{E} 13 \mathrm{E} 001 \mathrm{M}$	5070	374118N1206085W001	37.4118	-120.6085	Outside
6 06S12E14K001M	5071	374107N1206218W001	37.4107	-120.6218	Outside
$606 S 12 \mathrm{E} 16 \mathrm{F001M}$	5073	374113N1206613W001	37.4113	-120.6613	Outside
$606 S 12 E 17 J 001 M$	5074	374080N1206685W001	37.408	-120.6685	Outside
608508 E 35 P 001 M	8015	371882N1210591W001	37.1882	-121.0591	Outside

6	$08 S 09 E 05 H 001 M$	8024	362686 N1209946W001	36.2686

6 606S13E33Q001M	5925	373610N1205452W001	37.361	-120.5452	Outside
$606 S 14 \mathrm{E} 29 \mathrm{C001M}$	5927	373899N1204596W001	37.3899	-120.4596	Outside
6 06S14E32N001M	5929	373613N1204679W001	37.3613	-120.4679	Outside
6 10S10E31G001M	10763	370207N1209163W001	37.0207	-120.9163	Outside
610 S09E20E001M	12690	370496N1210163W001	37.0496	-121.0163	Outside
610 S09E23C001M	12691	370557N1209557W001	37.0557	-120.9557	Outside
611 S10E07C002M	13904	369974N1209218W001	36.9974	-120.9218	Outside
609516 E 12 F 001 M	11564	371657N1201763W001	37.1657	-120.1763	Outside
6 07S13E04D001M	10043	373596N1205579W001	37.3596	-120.5579	Outside
6 07S13E04P001M	10044	373466N1205499W001	37.3466	-120.5499	Outside
6 07S13E05F001M	10045	373560N1205710W001	37.356	-120.571	Outside
6 07S13E05K001M	10046	373510N1205641W001	37.351	-120.5641	Outside
6 07S13E06E001M	10047	373568N1205938W001	37.3568	-120.5938	Outside
$605 S 11 \mathrm{E13K001M}$	5676	374963N1207088W001	37.4963	-120.7088	Outside
$605 \mathrm{S11E23R001M}$	5683	374782N1207238W001	37.4782	-120.7238	Outside
$605 \mathrm{S11E25A001M}$	5684	374760N1207035W001	37.476	-120.7035	Outside
$607512 \mathrm{E} 02 \mathrm{B001M}$	31379	373596N1206216W001	37.3596	-120.6216	Outside
6 05S12E02G001M	31273	375285N1206174W001	37.5285	-120.6174	Outside
3 05S12E11G001M	31274	375138N1206171W001	37.5138	-120.6171	Outside
3 05S12E12F001M	31275	375163N1206074W001	37.5163	-120.6074	Outside
6 08S08E03R001M	31298	372610N1210682W001	37.261	-121.0682	Outside
6 08S08E11N001M	31299	372463N1210671W001	37.2463	-121.0671	Outside
$605 S 12$ E01A001M	30975	375338N1205977W001	37.5338	-120.5977	Outside
6 05S12E01M001M	30976	375246N1206074W001	37.5246	-120.6074	Outside
6 09S17E07D001M	31328	371685N1201613W001	37.1685	-120.1613	Outside
6 09S17E09C001M	31329	371666N1201246W001	37.1666	-120.1246	Outside
609516 E 11 H 001 M	31021	371655N1201882WV001	37.1655	-120.1882	Outside
$605 S 12 \mathrm{E} 18 \mathrm{A001M}$	31388	375063N1206888WW001	37.5063	-120.6888	Outside
6 05S12E18L001M	31389	374963N1206974W001	37.4963	-120.6974	Outside
6 05S12E20E001M	31390	374874N1206807W001	37.4874	-120.6807	Outside
6 05S12E22J001M	31391	374805N1206307W001	37.4805	-120.6307	Outside
6 05S12E25L001M	31392	374677N1206071W001	37.4677	-120.6071	Outside
$605 S 12 \mathrm{E} 28 \mathrm{~J} 001 \mathrm{M}$	31393	374693N1206496W001	37.4693	-120.6496	Outside
$608 S 08 \mathrm{E} 14 \mathrm{~N} 001 \mathrm{M}$	10780	372324N1210666W001	37.2324	-121.0666	Outside
608508 E 15 J 001 M	10782	372377N1210685W001	37.2377	-121.0685	Outside
6 08S08E15K001M	10783	372377N1210752W001	37.2377	-121.0752	Outside
6 08S08E21A001M	10788	372313N1210891W001	37.2313	-121.0891	Outside
6 08S08E22P001M	10790	372182N1210802W001	37.2182	-121.0802	Outside
6 08S08E23N001M	10792	372185N1210671W001	37.2185	-121.0671	Outside
6 07S13E04M001M	29965	373502N1205579W001	37.3502	-120.5579	Outside
6 07S13E06J001M	29968	373527N1205779W001	37.3527	-120.5779	Outside
6 07S12E12D001M	30801	373455N1206129W001	37.3455	-120.6129	Outside
6 06S13E07H001M	27875	374260N1205760W001	37.426	-120.576	Outside
$606 S 13 \mathrm{E} 19 \mathrm{N001M}$	27876	373902N1205943W001	37.3902	-120.5943	Outside
6 06S13E31F001M	27878	373685N1205846W001	37.3685	-120.5846	Outside
$606 S 13$ E33P001M	27879	373607N1205535W001	37.3607	-120.5535	Outside
6 07S14E03N001M	27533	373471N1204321W001	37.3471	-120.4321	Outside
6 07S14E09R001M	27534	373341N1204371W001	37.3341	-120.4371	Outside

6	O7S14E11N001M	27535	$373324 N 1204138 W 001$	37.3324
6	-120.4138	Outside		
6	O7S14E13N001M	27536	373180 N1201203966W001	37.318

7 708S08E27A001M	40094	372160N1210699W001	37.216	-121.0699	Outside
7 08S08E35C001M	40096	372024N1210582W001	37.2024	-121.0582	Outside
7 10S09E20D002M	38988	370557N1210160W001	37.0557	-121.016	Outside
7 08S15E11A001M	38270	372571N1202891W001	37.2571	-120.2891	Outside
707S12E01M001M	38177	373507N1206132W001	37.3507	-120.6132	Outside
7 05S12E02B001M	9577	375327N1206185W001	37.5327	-120.6185	Outside
7 05S12E09M001M	9588	375130N1206641W001	37.513	-120.6641	Outside
7 05S12E11F001M	9589	375166N1206238W001	37.5166	-120.6238	Outside
7 05S12E18D001M	9597	375066N1207032W001	37.5066	-120.7032	Outside
7 07S12E02C001M	8624	373602N1206243W001	37.3602	-120.6243	Outside
7 07S14E08A001M	7953	373463N1204510W001	37.3463	-120.451	Outside
7 07S14E26H001M	7967	372980N1203977W001	37.298	-120.3977	Outside
7 08S08E27K001M	8012	372085N1210768W001	37.2085	-121.0768	Outside
7 06S12E04M001M	5064	374374N1206649W001	37.4374	-120.6649	Outside
7 06S12E06N001M	5066	374341N1206999W001	37.4341	-120.6999	Outside
7 06S12E12J001M	5069	374255N1205949W001	37.4255	-120.5949	Outside
7 06S12E15R001M	5072	374043N1206318W001	37.4043	-120.6318	Outside
7 08S08E34C001M	8013	372021N1210777W001	37.2021	-121.0777	Outside
7 08S08E35R002M	8016	371896N1210524W001	37.1896	-121.0524	Outside
7 08S15E05A001M	7537	372732N1203466W001	37.2732	-120.3466	Outside
7 08S15E13A001M	7544	372393N1202713W001	37.2393	-120.2713	Outside
7 07S15E33A001M	8674	372877N1203252W001	37.2877	-120.3252	Outside
7 07S15E35A001M	8676	372874N1202899W001	37.2874	-120.2899	Outside
7 08S16E17R001M	8233	372288N1202346W001	37.2288	-120.2346	Outside
7 08S16E20J001M	8234	372196N1202357W001	37.2196	-120.2357	Outside
7 07S15E35F002M	8677	372807N1203002W001	37.2807	-120.3002	Outside
7 08S16E36C001M	8237	371991N1201713W001	37.1991	-120.1713	Outside
7 04S13E14J001M	6850	375846N1205021W001	37.5846	-120.5021	Outside
7 04S13E24G001M	6853	375741N1204891W001	37.5741	-120.4891	Outside
7 04S13E27C001M	6854	375652N1205288W001	37.5652	-120.5288	Outside
7 04S13E28K001M	6855	375563N1205449W001	37.5563	-120.5449	Outside
7 08S16E09M001M	8097	372446N1202271W001	37.2446	-120.2271	Outside
7 07S14E36A001M	8112	372885N1203793W001	37.2885	-120.3793	Outside
7 07S15E12E001M	8114	373416N1202846W001	37.3416	-120.2846	Outside
7 07S15E14M001M	8115	373224N1203066W001	37.3224	-120.3066	Outside
7 07S15E16J001M	8116	373238N1203249W001	37.3238	-120.3249	Outside
7 08S08E27G001M	7877	372107N1210766W001	37.2107	-121.0766	Outside
7 04S13E30P001M	5448	375513N1205854W001	37.5513	-120.5854	Outside
7 04S13E34P001M	5449	375396N1205274W001	37.5396	-120.5274	Outside
7 04S13E34P002M	5450	375366N1205282W001	37.5366	-120.5282	Outside
7 06S13E26K001M	5922	373793N1205116W001	37.3793	-120.5116	Outside
7 06S13E31N002M	5924	373607N1205932W001	37.3607	-120.5932	Outside
$706 S 13 \mathrm{E} 36 \mathrm{~L} 001 \mathrm{M}$	5926	373668N1204982W001	37.3668	-120.4982	Outside
7 06S14E32B001M	5928	373735N1204568W001	37.3735	-120.4568	Outside
7 04S14E08J001M	5614	375980N1204454W001	37.598	-120.4454	Outside
7 04S14E18H001M	5615	375874N1204646W001	37.5874	-120.4646	Outside
7 04S14E20G001M	5616	375730N1204499W001	37.573	-120.4499	Outside
7 04S14E30H001M	5617	375585N1204627W001	37.5585	-120.4627	Outside

7 704S14E32P001M	5618	375366N1204560W001	37.5366	-120.456	Outside
7 10S09E15F001M	12682	370638N1209738W001	37.0638	-120.9738	Outside
7 10S09E16A001M	12683	370677N1209810W001	37.0677	-120.981	Outside
710 S09E16B001M	12684	370685N1209868W001	37.0685	-120.9868	Outside
710 S09E16C002M	12685	370677N1209904W001	37.0677	-120.9904	Outside
710 S09E17A001M	12686	370707N1209991W001	37.0707	-120.9991	Outside
710 S09E19D001M	12687	370557N1210313W001	37.0557	-121.0313	Outside
7 10S10E31D001M	10762	370266N1209232W001	37.0266	-120.9232	Outside
7 10S09E20B001M	12688	370557N1210035W001	37.0557	-121.0035	Outside
7 10S09E20D001M	12689	370557N1210149W001	37.0557	-121.0149	Outside
7 10S09E23C002M	12692	370530N1209568W001	37.053	-120.9568	Outside
7 10S09E23D001M	12693	370549N1209593W001	37.0549	-120.9593	Outside
710 S09E23D002M	12694	370538N1209604W001	37.0538	-120.9604	Outside
710 S09E23D003M	12695	370552N1209616W001	37.0552	-120.9616	Outside
7 10S09E23D004M	12696	370555N1209607W001	37.0555	-120.9607	Outside
710 S09E23F001M	12697	370493N1209577W001	37.0493	-120.9577	Outside
7 10S09E25J003M	12701	370327N1209307W001	37.0327	-120.9307	Outside
7 09S16E09C001M	11562	371705N1202293W001	37.1705	-120.2293	Outside
7 05S13E07F001M	7656	375138N1205849W001	37.5138	-120.5849	Outside
7 05S13E11C001M	7657	375191N1205118W001	37.5191	-120.5118	Outside
7 05S13E19Q001M	7658	374777N1205846W001	37.4777	-120.5846	Outside
7 05S13E27D001M	7659	374735N1205391W001	37.4735	-120.5391	Outside
$705 \mathrm{S14E18K001M}$	7660	374988N1204738W001	37.4988	-120.4738	Outside
7 05S15E07A001M	7661	376341N1203593W001	37.6341	-120.3593	Outside
7 07S13E03D001M	10042	373577N1205399W001	37.3577	-120.5399	Outside
7 07S13E06R002M	10048	373491N1205799W001	37.3491	-120.5799	Outside
7 07S13E11D001M	10053	373460N1205191W001	37.346	-120.5191	Outside
7 07S13E12M001M	10054	373355N1205038W001	37.3355	-120.5038	Outside
7 07S12E01E001M	31378	373549N1206104W001	37.3549	-120.6104	Outside
7 05S13E08C001M	29254	375193N1205699W001	37.5193	-120.5699	Outside
7 05S13E16K001M	29255	374960N1205482W001	37.496	-120.5482	Outside
7 05S14E05D001M	29256	375341N1204632W001	37.5341	-120.4632	Outside
7 05S14E16G001M	29257	375005N1204396W001	37.5005	-120.4396	Outside
7 05S17E17N001M	29258	374916N1201407W001	37.4916	-120.1407	Outside
7 08S08E26N001M	27383	372041N1210649W001	37.2041	-121.0649	Outside
7 08S08E27B001M	27384	372138N1210760W001	37.2138	-121.076	Outside
7 07S12E03H001M	31381	373532N1206316W001	37.3532	-120.6316	Outside
7 05S12E13N001M	31386	374930N1206088W001	37.493	-120.6088	Outside
7 08S08E15Q001M	10784	372349N1210757W001	37.2349	-121.0757	Outside
7 08S08E16G001M	10785	372421N1210935W001	37.2421	-121.0935	Outside
7 08S08E22N001M	10789	372177N1210852W001	37.2177	-121.0852	Outside
7 07S13E02F001M	29964	373566N1205157W001	37.3566	-120.5157	Outside
$707 S 13 E 04 R 001 \mathrm{M}$	29966	373466N1205413W001	37.3466	-120.5413	Outside
7 07S13E06A001M	29967	373599N1205771W001	37.3599	-120.5771	Outside
7 08S15E24R001M	27830	372141N1202710W001	37.2141	-120.271	Outside
7 04S13E29P001M	29318	375543N1205677W001	37.5543	-120.5677	Outside
7 04S13E34H001M	29319	375457N1205218W001	37.5457	-120.5218	Outside
7 06S13E28A001M	27877	373896N1205438W001	37.3896	-120.5438	Outside

	06S14E20N001M	27880	373927N1204677W001	37.3927	-120.4677	Outside
	09S08E12B001M	13640	371721N1210385W001	37.1721	-121.0385	Outside
	09S08E13E001M	13643	371532N1210460W001	37.1532	-121.046	Outside
	09S08E14E001M	13644	371543N1210679W001	37.1543	-121.0679	Outside
	09S08E14G001M	13645	371527N1210554W001	37.1527	-121.0554	Outside
	09S08E25J001M	13646	371199N1210349W001	37.1199	-121.0349	Outside
	09S08E36A001M	13647	371149N1210354W001	37.1149	-121.0354	Outside
	09S08E36H001M	13648	371110N1210352W001	37.111	-121.0352	Outside
7	04S13E23C001M	27497	375785N1205099W001	37.5785	-120.5099	Outside
7	10S09E07N001M	12125	370735N1210335W001	37.0735	-121.0335	Outside
7	10S09E08P002M	12126	370716N1210074W001	37.0716	-121.0074	Outside
	09S08E01N001M	24509	371741N1210493W001	37.1741	-121.0493	Outside
	09S09E07N001M	24510	371591N1210316W001	37.1591	-121.0316	Outside
	O9S09E19D001M	24512	371438N1210321W001	37.1438	-121.0321	Outside
	06S12E36K001M	27578	373649N1206038W001	37.3649	-120.6038	Outside
	06S13E06N001M	27579	374335N1205941W001	37.4335	-120.5941	Outside
7	07S14E29D001M	27948	373027N1204693W001	37.3027	-120.4693	Outside
	05S12E28K001M	30247	374660N1206543W001	37.466	-120.6543	Outside
	06S14E32A001M	27881	373735N1204532W001	37.3735	-120.4532	Outside
	06S14E32R001M	27882	373613N1204507W001	37.3613	-120.4507	Outside
	09S16E09H001M	11563	O9S16E09H001M	37.1643	-120.2213	Outside
7	-		WELL 154	37.29139876	-120.4155755	Outside
7	7		WELL 085	37.36275023	-120.6128142	Outside
7	7		McConnell SRA	37.41444	-120.7103	Outside
7	7		Atwater Well \#6	37.35010938	-120.5994056	Outside
2	09S17E09D001M	11728		37.1702	-120.1271	Outside
3 (estimate)			Minturn DW2	37.15796	-120.26003	Outside
3 (estimate)			Buchanan Hollow DW1	37.20581	-120.25291	Outside
3 (estimate)			Ferguson DW1	37.22943	-120.22582	Outside
3 (estimate)			Jeff DW1	37.25775	-120.28954	Outside
3 (estimate)			Mission DW1	37.27593	-120.28149	Outside
3 (estimate)			Dhillon DW1	37.29406	-120.27042	Outside
3 (estimate)			Thompson DW1	37.23643	-120.31152	Outside
3 (estimate)			Soares DW1	37.26488	-120.32521	Outside
3 (estimate)			DDC DW2	37.25466	-120.34808	Outside
3 (estimate)			Domestic Well 1	37.3305	-120.310556	Outside
3 (estimate)			Agriculture Well 1	37.334639	-120.304167	Outside
3 (estimate)			Domestic Well 2	37.343861	-120.311528	Outside
3 (estimate)			Domestic Well 3	37.352917	-120.279056	Outside
3 (estimate)			Agriculture Well 2	37.351861	-120.252028	Outside
3 (estimate)			MID Well \#240	37.39018	-120.459388	Outside
A. Wells with tier "3 (estimate)" were added manually based on information from stakeholders during the Data Gaps Plan development process. Outside Corcoran wells may or may not have associated construction information. This information would be required during the implementation phase if such wells were to be included in the monitoring network. Above/Below Corcoran Wells needed to already have construction information associated in order to sort them into the appropriate principal aquifer.						

