GSP Coordinating Committee

Coordinating Committee Meeting – September 24, 2018

Merced Irrigation-Urban GSA Merced Subbasin GSA Turner Island Water District GSA-1

Agenda

- 1. Call to Order
- 2. Approval of Minutes for August 27, 2018
- 3. Stakeholder Committee Update
- 4. Presentation by Woodard & Curran on GSP Development
 - a) Minimum Thresholds
 - b) Projected Water Budget and Sustainable Yield
 - c) Projects and Management Actions

Agenda

5. CASGEM Update
6. Public Outreach Update
7. Coordination with Neighboring Basins
8. Public Comment
9. Next Steps and Adjourn

Approval of Minutes

Stakeholder Committee Update

Minimum Thresholds

Minimum Thresholds will be Developed for Four of the Six Sustainability Indicators

Developing Minimum Thresholds is an Iterative Process

- Water Budgets (available water estimates and usage) influence what kinds of Projects and Management Actions are needed (actions needed to manage usage and reach sustainability)
- Projects and Management Actions (actions we take) will in turn impact the Water Budget (available water). Projects and actions reflect stakeholder input (what is important for the Subbasin?)
- Depending on what projects and management actions are implemented and when, groundwater elevations may change (thresholds and measurable objectives)
- Additional information feeds into understanding the goals we want to achieve with projects and actions including what are our undesirable results, minimum thresholds and measurable objectives

Minimum Thresholds – Updated Approach

- Added 18 monitoring wells for threshold analysis
- Merced County domestic wells database
 - Active wells
 - Omits wells that do not meet County annular seal requirement
 - Filtered for other outliers
- Minimum threshold is defined as the shallowest of either
 - Historical low groundwater elevation at the monitoring well, minus a buffer (range of min & max GWLs from 2008-2018) – this assumes that over the next 20 years, GWE will decline at approximately half the max rate seen over the past 10 years
 - UNLESS this would dewater the shallowest nearby domestic well

 in this case, threshold was increased to protect nearby wells

Voluntary Wells Added

Minimum Thresholds Example: Well 32342 (new voluntary well)

Minimum Thresholds Example: Well 32342 (new voluntary well)

What Comes Next?

- Projected Water Budget will be used to understand average sustainable pumping rates basin-wide
- Projects and Management Actions need to be identified to include supply and demand-side measures to achieve sustainability
- Depending on rate of project implementation, groundwater elevation thresholds may need to be adjusted

Rate of Plan Implementation May Necessitate Changes in GW Elevation Thresholds

Minimum Thresholds Need will be Developed for Four of the Six Sustainability Indicators

Undesirable Results for Degraded Water Quality

Degraded Water Quality

Why is this a concern? What are we trying to avoid?

- Localized salinity issues connate water / upwelling saline brines in deep wells, delta brackish water intrusion from reduced water levels, and Corcoran Clay acting as a pathway and barrier
- Nitrates historical agricultural uses. Being addressed through CV-SALTS and Irrigated Lands Regulatory Programs.

Water Quality Recap

Focused on salinity – using TDS data

3 Primary Sources of Salinity:

- 1. Saline, Connate Water from Marine Sedimentary Rocks Pumping of Deep Wells in Western & Southern Basin (results in upwelling saline brines)
- 2. High-Chloride Water from San Joaquin Delta Sediments Intrusion from declining groundwater levels
- 3. Corcoran Clay Naturally impedes high TDS groundwater, but wells perforated create pathways for TDS to migrate

Majority of Wells with Water Quality Data Don't Have Depth Data

Maximum Salinity Concentrations 2008 - 2018

Fewer Recent Data Available (2015 – 2018)

Little Data Available for Above Corcoran Clay

Little Data Available for Below Corcoran

Outside Corcoran Clay highest salinity is near Atwater

Identified Area of Data Gap

Potential Plumes

Next Steps – Water Quality Thresholds

- Obtain construction information at select wells with salinity data
 - Refine well matching analysis in GIS
 - County of Merced is working on compiling a database of well construction data
 - Identify wells to measure total depth
 - Identify wells to video log
- Identify more "recent" TDS monitoring (since 2008+) if available

Projected Water Budget and Sustainable Yield

Water Budgets: Defining Timeframes

Historical Water Budget

Uses historical information for hydrology, precipitation, water year type, water supply and demand, and land use going back a minimum of 10 years.

Current Water Budget

Holds constant the most recent or "current" data on population, land use, year type, water supply and demand, and hydrologic conditions.

Projected Water Budget

Uses the future planning horizon to estimate population growth, land use changes, climate change, etc.

Projected Conditions Baseline – Modeling Inputs

- Hydrologic Period: Water Years 1969-2018 (50-Year Hydrology)
- River Flows
 - Merced: MercedSIM
 - San Joaquin: CalSim
 - Local Tributaries: Historic Records
- Land Use and Cropping Patterns:
 - 2013 CropScape modified based on discussions with GSAs
- Urban Water Use:
 - General Plan Buildout Conditions
 - Basin Average GPCD: 300
- Surface Water Deliveries provided by local purveyors

Projected Conditions Baseline Land & Water Use Budget

Merced Groundwater Subbasin

MERCED

- Below 0 values indicate demand (including agricultural and urban)
- Above 0 values indicate supplies (including pumping and diversion)

Projected Conditions Baseline Groundwater Budget

Merced Groundwater Subbasin

- Positive numbers show flow into aquifer
- Negative numbers show flow out of aquifer
- Line shows overall decline in stored groundwater over time

Projected Conditions Groundwater Budget

Merced Groundwater Subbasin

and outflows (on left)

Going from Water Budgets to Quantifying Sustainable Yield

What is sustainable yield?

 "the maximum quantity of water, calculated over a base period representative of long-term conditions in the basin and including any temporary surplus, that can be withdrawn annually from a groundwater supply without causing an undesirable result."

How do we develop this?

 Can be developed through a groundwater model scenario, modifying conditions to balance out the change in stored groundwater over time

How do we work toward a balance?

 Implement projects and management actions to increase recharge or decrease production

Sustainable Yield – Modeling Analysis

Modeling Approach

 Lower groundwater production through reduced agricultural and urban demand across the model domain

Assumptions

- 25-Year Implementation Period: operations will remain consistent, and groundwater levels will continue to decline until 2040
- Inter-Subbasin Flows: adjoining subbasins will operate similarly to Merced, whereas subsurface flows will remain similar to long-term average historical conditions

DRAFT Results: Initial simulations only address subbasin yield, analysis is needed to gauge effect on ensure minimum thresholds.

Modeling Assumes "Glidepath" to Sustainability Between 2020 and 2040

[Sustainable Yield Land and Water Use Budget]

[Sustainable Yield Groundwater Budget]

[Sustainable Yield Groundwater Budget]

[Sustainable Yield Groundwater Budget – Average Annual]

Sustainable Yield – Modeling Results

- "Allocations" needed to bring the basin into sustainability by 2040
 - Surface Water Yield
 - Groundwater Yield
 - Pumping Reduction

460,000AF 500,000AF 150,000AF ~2.6 AF/Ac* ~1.0 AF/Ac** ~23%

Notes:

Surface Water Yield: is defined as total surface water supplies divided by the ag acreage within MID, SWD, MCWD, and TIWD Groundwater Yield: is defined as basin pumping divided by the total acreage of the basin, both developed and undeveloped

Sustainable Yield Water Budget

Budget Component	Units	MIUGSA
Area	Acres	163,000
Ag Demand	AF	402,000
Urban Demand	AF	82,000
Surface Water Diversions*	AF	407,000
Groundwater Allocation	AF	163,000
Total Water Demand	ft	484,000
Total Water Supply	ft	570,000

Budget Component	Units	MIUGSA
Ag Demand	ft	2.5
Urban Demand	ft	0.5
Surface Water Diversions*	ft	2.5
Groundwater Allocation	ft	1.0
Total Water Demand	ft	3.0
Total Water Supply	ft	3.5

Note: Surface water diversions do not incorporate canal seepage, evaporative losses, or discharge from district wells.

Sustainable Yield Water Budget

Budget Component	Units	MSGSA
Area	Acres	338,000
Ag Demand	AF	429,000
Urban Demand	AF	7,000
Surface Water Diversions*	AF	39,000
Groundwater Allocation	AF	338,000
Total Water Demand	ft	436,000
Total Water Supply	ft	377,000

Budget Component	Units	MSGSA
Ag Demand	ft	1.3
Urban Demand	ft	0.0
Surface Water Diversions*	ft	0.1
Groundwater Allocation	ft	1.0
Total Water Demand	ft	1.3
Total Water Supply	ft	1.1

Note: Surface water diversions do not incorporate canal seepage, evaporative losses, or discharge from district wells.

Sustainable Yield Water Budget

Budget Component	Units	TIWD
Area	Acres	12,000
Ag Demand	AF	23,000
Urban Demand	AF	-
Surface Water Diversions*	AF	20,000
Groundwater Allocation	AF	12,000
Total Water Demand	ft	23,000
Total Water Supply	ft	32,000

Budget Component	Units	TIWD
Ag Demand	ft	1.9
Urban Demand	ft	0.0
Surface Water Diversions*	ft	1.6
Groundwater Allocation	ft	1.0
Total Water Demand	ft	1.9
Total Water Supply	ft	2.6

Note: Surface water diversions do not incorporate canal seepage, evaporative losses, or discharge from district wells.

Discussion & Questions

- Do you understand the water budgets and sustainable yield?
- What are your questions and take-aways from the information presented on water budgets and sustainable yield?

Subsidence – Projected Groundwater Levels

Observed Data - Calibration Well - 1802

-----MercedWRM Simulated GWL

Observed Data - Calibration Well - 2106

---- Merced WRM Simulated GWL

Observed Data - Calibration Well - 1918

—MercedWRM Simulated GWL

Next Steps

- Identify strategies to return groundwater elevations to Jan 1
 2015 levels in subsidence area
- Consider carving out management area as this area will need to be addressed differently than the rest of the basin
- Coordinate with neighboring basins on assumptions and thresholds for subsidence area

Projects and Management Actions

Projects and Management Actions (overview)

- Projects should be implemented to help achieve sustainability management while minimizing impacts to groundwater beneficial users
- Projects and Management Actions can increase supply availability and / or reduce demand for groundwater
 - Evaluate supply-side options and their effect on yield
 - Evaluate various governance options (water market, etc.)

Categories of Projects and Management Actions

- Flood/Stormwater Management
- Recycling
- Conservation
- Recharge
- Transfers

Examples of Projects and Management Actions

- Intra-basin transfers
- Non-potable supply projects (expand recycled water use)
- Stormwater capture and recharge
- Conservation incentives
 - Improved water use efficiencies
 - Drought surcharges
 - Fallowing (fallowed land program)
 - Crop changes
- Potential ordinances
- Groundwater markets
- Pumping curtailments/fees

Next Steps

- Coordinate with GSAs and local agencies to understand what project and management options exist
- Identify potential options for inclusion in the GSP
- Determine affects of projects / management actions on basin conditions
- Develop implementation plan
- Revisit thresholds

What Information is Needed?

Project Details:

- Size
- Location
- Timeline
- Estimated Cost (Capital and O&M)
- Status of Design
- Permitting and Funding
- Project Partners and Beneficiaries Identified

Projects and Management Actions Discussion

- Preliminary thoughts on how best to solicit input and identify projects and management actions?
- What kinds of projects and actions do you want to consider?

CASGEM Update

Public Outreach Update

Public Outreach

Public Outreach Meetings/Workshop - December

- Project Update
- Water Budgets
- Management Actions and Projects
- Week of December 3
 - Any conflicts?

Coordination With Neighboring Basins Update

Coordination with Neighboring Basins

Inter-Subbasin Coordination

- Continued coordination on Chowchilla Subbasin Modeling Approach
- Preliminary discussion with Delta-Mendota Subbasin to understand timelines for future coordination

Questions/Comments from Public

Next Steps

Next Steps

GSP Development Items:

- Finalize water budgets and document assumptions for review and approval by GSAs (targeting November GSA Board Briefings)
- Wrap up Sustainable Yield analysis
- Identify projects and management actions for review and consideration
- Focus for October meeting
 - Projects and management actions
- Adjourn to next meeting (Monday, October 22, 2018 @ 1:30 PM, location Castle Airport)

GSP Coordinating Committee

Coordinating Committee Meeting – September 24, 2018

Merced Irrigation-Urban GSA Merced Subbasin GSA Turner Island Water District GSA-1

